

\$ sciendo Vol. 27(3),2019, 195–205

LERAY–SCHAUDER ALTERNATIVES FOR MAPS SATISFYING COUNTABLE COMPACTNESS CONDITIONS

Donal O'Regan

Abstract

In this paper we present Leray–Schauder alternatives for a general class of Mönch type maps.

1. Introduction.

Leray-Schauder type alternatives for compact, condensing, Mönch type maps have been discussed extensively in the literature; we refer the reader to [1, 2, 3, 7] and the references therein. In this paper we present coincidence theory of Leray-Schauder type for very general Mönch type maps using the idea of an essential map initially introduced by Granas [2]. The results in this paper generalizes the theory in the literature (see [1, 4] and the references therein).

In the remainder of this section we present Mönch type coincidence results from the literature [5]. By a space we mean a Hausdorff topological space. Let X and Y be spaces. For a multivalued map $G : X \to 2^Y$ (here 2^Y denotes the family of nonempty subsets of Y) we consider the upper inverse G^u defined by $G^u(A) = \{x \in X : G(x) \subseteq A\}$ and the lower inverse G^l defined by $G^l(A) = \{x \in X : G(x) \cap A \neq \emptyset\}$ (here $A \subseteq Y$); of course $G^u(A) \subseteq G^l(A)$. In this paper we will let G^{-1} denote G^u .

Key Words: Essential maps, coincidence points, nonlinear alternatives. 2010 Mathematics Subject Classification: Primary 47H10; Secondary 54H25. Received: 17.01.2019

Accepted: 25.02.2019

In this paper we consider classes \mathbf{A} , \mathbf{B} and \mathbf{C} of maps. Let X and E be spaces.

Definition 1.1. We say $G \in M(X, E)$ (respectively, $G \in MB(X, E)$, $G \in MC(X, E)$) if $G : X \to 2^E$ and $G \in \mathbf{A}(X, E)$ (respectively, $G \in \mathbf{B}(X, E)$, $G \in \mathbf{C}(X, E)$).

We now state two Mönch type coincidence theorems established in [5] (other results can also be found there and also in [6]).

Theorem 1.2. Let X be a metrizable topological vector space and Y a space. Assume $\Phi : Y \to 2^X$, $F : Y \to 2^X$, $x_0 \in \Phi(Y)$ and suppose the following conditions hold:

(1.1)
$$\Phi^{-1}\left(\overline{co}\left(\{x_0\} \cup F(Y)\right)\right) \subseteq Y; \quad here \quad \Phi^{-1} = \Phi^u$$

(1.2)
$$\begin{cases} A \subseteq Y, \ A = \Phi^{-1}\left(\overline{co}\left(\{x_0\} \cup F(A)\right)\right), & \text{for any} \\ \text{countable set } Q \subseteq A & \text{we have a countable set} \\ M \subseteq X & \text{with } M \subseteq \Phi(Q) \subseteq \overline{M} \end{cases}$$

(1.3)
$$\begin{cases} A \subseteq Y, \ A = \Phi^{-1}\left(\overline{co}\left(\{x_0\} \cup F(A)\right)\right) & with \ C \subseteq A \\ countable \ and \ \Phi(C) \subseteq \overline{co}\left(\{x_0\} \cup F(C)\right), \\ implies \ \overline{co}\left(F(C)\right) & is \ compact \end{cases}$$

and

(1.4)
$$\begin{cases} \text{for any nonempty set } A \subseteq Y, \ A = \Phi^{-1} \left(\overline{co} \left(\{x_0\} \cup F(A) \right) \right) \\ \text{with } \overline{co} \left(F(A) \right) \text{ compact we have that} \\ F \Phi^{-1} \in MC(\overline{co} \left(F(A) \right), \overline{co} \left(F(A) \right)) \text{ and there exists} \\ x \in \Phi^{-1} \left(\overline{co} \left(F(A) \right) \right) \text{ with } F(x) \cap \Phi(x) \neq \emptyset. \end{cases}$$

Then there exists $x \in Y$ with $F(x) \cap \Phi(x) \neq \emptyset$.

Remark 1.3. (a). In Theorem 1.2, X metrizable can be replaced by any space with the following properties: (i). X is such that the closure of a subset Ω of X is compact if and only if Ω is sequentially compact, and (ii). for any convex set $D \subseteq X$ if $x \in \overline{D}$ then there exists a sequence x_1, x_2, \ldots in D with x_n converging to x.

(b). In some applications we are interested in maps $\Theta: Y \to 2^X$ and $\Psi: Y \to 2^X$ where F (maybe Θ itself) is a selection of Θ and Φ (maybe Ψ itself) is a selection of Ψ ; note F is a selection of Θ if $F(x) \subseteq \Theta(x)$ for $x \in Y$. Now assuming the conditions in Theorem 1.2 we know there exists a $x \in Y$ with $F(x) \cap \Phi(x) \neq \emptyset$, so as a result $\Theta(x) \cap \Psi(x) \neq \emptyset$.

(c). Note in (1.4) we could of course replace $F \Phi^{-1} \in MC(\overline{co}(F(A)), \overline{co}(F(A)))$ with $F \Phi^{-1} \in MC(\overline{co}(F(A)), F(A))$.

(d). If $\Phi: Y \to X$ is single valued then trivially (1.2) holds by taking $M = \Phi(Q)$. Of course for (1.2) we just need that Φ maps countable sets in Y to separable sets in X.

Theorem 1.4. Let X be a metrizable topological vector space, Y a space, $\Phi: Y \to 2^X$, $F: Y \to 2^X$, $x_0 \in \Phi(Y)$ and suppose (1.1) and (1.2) hold. In addition assume the following conditions are satisfied:

(1.5)
$$\begin{cases} A \subseteq Y, \ A = \Phi^{-1}\left(\overline{co}\left(\{x_0\} \cup F(A)\right)\right), \ \text{for any}\\ \text{countable set } N \subseteq A \ \text{there exists a countable set}\\ P \subseteq A \ \text{with } \overline{co}\left(\{x_0\} \cup F(N)\right) \subseteq \overline{\Phi(P)} \end{cases}$$

and

(1.6)
$$\begin{cases} A \subseteq Y, \ A = \Phi^{-1}\left(\overline{co}\left(\{x_0\} \cup F(A)\right)\right) & \text{with } C \subseteq A \\ \text{countable and } \overline{\Phi(C)} = \overline{co}\left(\{x_0\} \cup F(C)\right), \\ \text{implies } \overline{co}\left(F(C)\right) & \text{is compact.} \end{cases}$$

Finally suppose (1.4) holds. Then there exists $x \in Y$ with $F(x) \cap \Phi(x) \neq \emptyset$.

Example 1.5. Suppose $\Phi: Y \to X$ is single valued and surjective and $F: Y \to 2^X$ maps countable sets in Y to separable sets in X (for example upper semicontinuous maps in metric spaces with separable values map separable sets to separable sets; see [8 pp. 345]). Then (1.5) holds. To see this note since $N \subseteq A$ that $\Phi^{-1}(\overline{co}(\{x_0\} \cup F(N))) \subseteq \Phi^{-1}(\overline{co}(\{x_0\} \cup F(A))) = A$ so $\{w \in Y : \Phi(w) \in \overline{co}(\{x_0\} \cup F(N))\} \subseteq A$. Now since Φ is surjective then

$$\overline{co}\left(\{x_0\} \cup F(N)\right) = \overline{co}\left(\{x_0\} \cup F(N)\right) \cap \Phi(Y) \subseteq \Phi(A);$$

to see this note if $x \in \overline{co}(\{x_0\} \cup F(N)) \cap \Phi(Y)$ then there exists $y \in Y$ with $x \in \overline{co}(\{x_0\} \cup F(N))$ and $x = \Phi(y)$, and note $\Phi(y) (= x) \in \overline{co}(\{x_0\} \cup F(N))$ so from the above $y \in A$ i.e. $x = \Phi(y)$, $y \in A$ i.e. $x \in \Phi(A)$. Thus $\overline{co}(\{x_0\} \cup F(N)) \subseteq F(N) \subseteq \Phi(A)$. Now N is countable so F(N) is separable and so we have [6] that $co(\{x_0\} \cup F(N)) \subseteq \overline{Q_0}$ and since $\overline{co}(\{x_0\} \cup F(N)) \subseteq \Phi(A)$ we have $Q_0 \subseteq \Phi(A)$. Thus there exists a countable set $Q_0 \subseteq X$ with $Q_0 \subseteq \phi(A)$. Thus there exists a countable set $P \subseteq A$ with $Q_0 \subseteq \Phi(P)$ and as a result $\overline{co}(\{x_0\} \cup F(N)) = \overline{Q_0} \subseteq \overline{\Phi(P)}$. Thus (1.5) holds.

2. Main results.

Let X be a Hausdorff topological vector space, Y a space and U an open subset of Y.

Definition 2.1. We say $F \in M(\overline{U}, X)$ (as in Section 1) if $F : \overline{U} \to 2^X$ and $F \in \mathbf{A}(\overline{U}, X)$; here \overline{U} denotes the closure of U in Y.

In this section we will fix a $\Phi : \overline{U} \to 2^X$ (from the class $MB(\overline{U}, X)$). **Definition 2.2.** (i). We say $F \in M^M(\overline{U}, X)$ if $F \in M(\overline{U}, X)$ and if $D \subseteq \overline{U}$ and $D \subseteq \Phi^{-1}(\overline{co}(\{0\} \cup F(D)))$ with $C \subseteq D$ countable and $\Phi(C) \subseteq \overline{co}(\{0\} \cup F(C))$ then $\overline{co}(F(C))$ is compact.

(ii). We say $G \in M^{MM}(\Omega, X)$ (here $\Omega \subseteq Y$ and $\Phi : Y \to 2^X$) if $G \in M(\Omega, X)$ and if $D \subseteq \Omega$, $D = \Phi^{-1}(\overline{co}(\{0\} \cup G(D)))$ with $C \subseteq D$ countable and $\Phi(C) \subseteq \overline{co}(\{0\} \cup G(C))$ (or $\overline{\Phi(C)} = \overline{co}(\{0\} \cup G(C))$) then $\overline{co}(G(C))$ is compact.

Definition 2.3. We say $F \in M^M_{\partial U}(\overline{U}, X)$ if $F \in M^M(\overline{U}, X)$ and $F(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$; here ∂U denotes the boundary of U in Y.

Definition 2.4. Let $F \in M^M_{\partial U}(\overline{U}, X)$. We say $F : \overline{U} \to 2^X$ is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$ if for any map $J \in M^M_{\partial U}(\overline{U}, X)$ with $J|_{\partial U} = F|_{\partial U}$ there exists an $x \in U$ with $J(x) \cap \Phi(x) \neq \emptyset$.

Remark 2.5. (i). Note if $F \in M^M_{\partial U}(\overline{U}, X)$ is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$ then there exists an $x \in U$ with $F(x) \cap \Phi(x) \neq \emptyset$ (take J = F in Definition 2.4).

(ii). In Definition 2.2 (and throughout the paper) we could replace $\{0\}$ with $\{x_0\}$ where $x_0 \in X$ is fixed.

We begin with a nonlinear alternative of Leray–Schauder type (a more general result will be presented in Theorem 2.14).

Theorem 2.6. Let X be a Hausdorff topological vector space, Y a normal topological space, U an open subset of Y, $\Phi : \overline{U} \to 2^X$ and $F \in M^M(\overline{U}, X)$. Assume the following conditions hold:

(2.1)
$$\begin{cases} \text{ the zero map (denoted by 0) is in } M^M_{\partial U}(\overline{U}, X) \text{ and} \\ 0 \text{ is } \Phi - essential in } M^M_{\partial U}(\overline{U}, X) \end{cases}$$

(2.2)
$$\Phi(x) \cap t F(x) = \emptyset \text{ for every } x \in \partial U \text{ and } t \in (0,1)$$

and

(2.3)
$$\begin{cases} \mu F \in M(\overline{U}, X) \text{ for any continuous map} \\ \mu : \overline{U} \to [0, 1] \text{ with } \mu(\partial U) = 0. \end{cases}$$

Let $\Omega = \{x \in \overline{U} : \Phi(x) \cap t F(x) \neq \emptyset \text{ for some } t \in [0,1]\}$ and we suppose

(2.4)
$$\Omega$$
 is closed.

Then there exists an $x \in \overline{U}$ with $\Phi(x) \cap F(x) \neq \emptyset$.

Proof: Suppose $\Phi(x) \cap F(x) = \emptyset$ for $x \in \partial U$ (otherwise we are finished). Let Ω be as in the statement of Theorem 2.6 and note (2.1) (see Remark 2.5) guarantees that $\Omega \neq \emptyset$. Next note $\Omega \cap \partial U = \emptyset$ (see (2.2), $\Phi(x) \cap F(x) = \emptyset$ for $x \in \partial U$ is assumed at the beginning of the proof, and $0 \in M^M_{\partial U}(\overline{U}, X)$). Now since Y is a normal topological space then (see (2.4)) there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define a map R by $R(x) = \mu(x) F(x)$. Note (2.3) guarantees that $R \in M(\overline{U}, X)$. We now claim

$$(2.5) R \in M^M_{\partial U}(\overline{U}, X)$$

First we show $R \in M^M(\overline{U}, X)$. Let $D \subseteq \overline{U}$ and $D \subseteq \Phi^{-1}(\overline{co}(\{0\} \cup R(D)))$ with $C \subseteq D$ countable and $\Phi(C) \subseteq \overline{co}(\{0\} \cup R(C))$. Note $R(C) \subseteq co(\{0\} \cup F(C))$, $R(D) \subseteq co(\{0\} \cup F(D))$ so

 $\overline{co}\left(\{0\} \cup R(D)\right) \subseteq \overline{co}\left(\{0\} \cup co\left(\{0\} \cup F(D)\right)\right) = \overline{co}\left(co\left(\{0\} \cup F(D)\right)\right) = \overline{co}\left(\{0\} \cup F(D)\right)$

and $\overline{co}(\{0\} \cup R(C)) \subseteq \overline{co}(\{0\} \cup F(C))$. Thus

$$D \subseteq \Phi^{-1}\left(\overline{co}\left(\{0\} \cup R(D)\right)\right) \subseteq \Phi^{-1}\left(\overline{co}\left(\{0\} \cup F(D)\right)\right)$$

and

$$\Phi(C) \subseteq \overline{co}\left(\{0\} \cup R(C)\right) \subseteq \overline{co}\left(\{0\} \cup F(C)\right).$$

Then since $F \in M^M(\overline{U}, X)$ we have that $\overline{co}(F(C))$ is compact. Now since $\overline{co}(R(C)) \subseteq \overline{co}(co(\{0\} \cup F(C))) = \overline{co}(\{0\} \cup F(C))$ we have that $\overline{co}(R(C))$ is compact. Thus $R \in M^M(\overline{U}, X)$. Next notice $R(x) \cap \Phi(x) = \emptyset$ for $x \in \partial U$ since if $x \in \partial U$ then $R(x) = \{0\}$ (note $\mu(\partial U) = 0$) and $\Phi(x) \cap \{0\} = \emptyset$ (recall $0 \in M^M_{\partial U}(\overline{U}, X)$). Thus (2.5) is true.

Note $R|_{\partial U} = 0|_{\partial U}$, $R \in M^M_{\partial U}(\overline{U}, X)$ and since 0 is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$ then there exists a $x \in U$ with $R(x) \cap \Phi(x) \neq \emptyset$. Thus $x \in \Omega$ so $\mu(x) = 1$ and as a result $F(x) \cap \Phi(x) \neq \emptyset$. \Box

Remark 2.7. (i). In (2.1) note if $0 \in M(\overline{U}, X)$ then $0 \in M^M(\overline{U}, X)$ since if $D \subseteq \overline{U}, D \subseteq \Phi^{-1}(\overline{co}(\{0\} \cup 0(D)))$ with $C \subseteq D$ countable and $\Phi(C) \subseteq \overline{co}(\{0\} \cup 0(C))$ then since $0(x) = \{0\}$ for $x \in C$ we have that $\overline{co}(0(C))$ is (trivially) compact.

(ii). Note in Theorem 2.6 if we replace Y a normal topological space with Y a completely regular topological space then the result in Theorem 2.6 is true provided we replace (2.4) with Ω is compact.

(iii). In Theorem 2.6 let $\Phi = i$ (the identity map) so $\Omega = \{x \in \overline{U} : x \in t F(x) \text{ for some } t \in [0,1]\}$. Let Y be any space with the property that the closure of a subset E of Y is compact if and only if E is sequentially compact. If Ω is closed then Ω is compact. To see this it is enough to show Ω is sequentially compact. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence in Ω and let $C = \{x_n\}_{n=1}^{\infty}$. Now there exists a sequence $\{t_n\}_{n=1}^{\infty}$ in [0,1] with $x_n \in t_n F(x_n)$. Now C is countable and $C \subseteq co(\{0\} \cup F(C))$ so $\Phi(C) = C \subseteq \overline{co}(\{0\} \cup F(C))$.

Then since $F \in M^M(\overline{U}, X)$ (take $D = \Omega$ and note $\Omega \subseteq co(\{0\} \cup F(\Omega))$ so $\Omega \subseteq \Phi^{-1}(\overline{co}(\{0\} \cup F(\Omega))))$ we have that $\overline{co}(F(C))$ is compact. As a result since $C \subseteq co(\{0\} \cup F(C))$ we have that \overline{C} is compact so $C = \{x_n\}_{n=1}^{\infty}$ has a convergent subsequence. Thus Ω is sequentially compact.

(iv). Note (2.2) is called the Leray–Schauder condition.

We now present some results which guarantee (2.1). For our next result we need $\Phi: Y \to 2^X$.

Theorem 2.8. Let X be a Hausdorff topological vector space, Y a space, U an open subset of $Y, \Phi: Y \to 2^X$, and assume the following conditions hold:

(2.6)
$$0 \in M(U,X)$$
 with $\{0\} \cap \Phi(x) = \emptyset$ for $x \in \partial U$ (i.e. $0 \notin \Phi(\partial U)$)

(2.7) there is no
$$z \in Y \setminus \overline{U}$$
 with $\Phi(z) \cap \{0\} \neq \emptyset$

(2.8)
$$\begin{cases} \text{for any map } J \in M^M_{\partial U}(\overline{U}, X) \text{ with } J|_{\partial U} = 0|_{\partial U} \text{ and} \\ R(x) = \begin{cases} J(x), x \in \overline{U} \\ \{0\}, x \in Y \setminus \overline{U}, \\ we \text{ have that } R \in M(Y, X) \end{cases}$$

and

(2.9)
$$\begin{cases} \text{for any map } H \in M^{MM}(Y,X) \text{ there exists} \\ x \in Y \text{ with } \Phi(x) \cap H(x) \neq \emptyset. \end{cases}$$

Then the zero map is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$.

Remark 2.9. (i). Note in fact R in (2.8) is in $M^{MM}(Y, X)$ (see the proof below) so one could replace (2.9) with: there exists $x \in Y$ with $\Phi(x) \cap R(x) \neq \emptyset$.

(ii). Note Theorem 1.2 (or Theorem 1.4) give conditions to guarantee (2.9). One could also use other theorems in [5, 6] to guarantee (2.9) (we might have to change slightly the definition of M^M and M^{MM} if we use these other theorems).

Remark 2.10. Note (2.6) and as in Remark 2.7 note $0 \in M^M(\overline{U}, X)$.

Proof: Let $J \in M^M_{\partial U}(\overline{U}, X)$ with $J|_{\partial U} = 0|_{\partial U}$. We must show there exists a $x \in U$ with $\Phi(x) \cap J(x) \neq \emptyset$. Let R be as in (2.8) and note $R \in M(Y, X)$. We claim $R \in M^{MM}(Y, X)$. To see this let $D \subseteq Y$ and $D = \Phi^{-1}(\overline{co}(\{0\} \cup R(D)))$ with $C \subseteq D$ countable and $\Phi(C) \subseteq \overline{co}(\{0\} \cup R(C))$ (or $\overline{\Phi(C)} = \overline{co}(\{0\} \cup R(C)))$. First note $\overline{co}(\{0\} \cup R(D)) \subseteq \overline{co}(\{0\} \cup J(D \cap \overline{U}))$ so $D = \Phi^{-1}(\overline{co}(\{0\} \cup R(D))) \subseteq \Phi^{-1}(\overline{co}(\{0\} \cup J(D \cap \overline{U})))$ and $\Phi(C) \subseteq \overline{co}(\{0\} \cup J(C \cap \overline{U}))$. As a result (2.10)

$$D \cap \overline{U} \subseteq \Phi^{-1} \left(\overline{co} \left(\{0\} \cup J(D \cap \overline{U}) \right) \right) \text{ and } \Phi(C \cap \overline{U}) \subseteq \overline{co} \left(\{0\} \cup J(C \cap \overline{U}) \right);$$

note $C \cap \overline{U}$ is countable. Now since $J \in M^M(\overline{U}, X)$ we have (see (2.10)) that $\overline{co}(J(C \cap \overline{U}))$ is compact. Now since $\overline{co}(R(C)) \subseteq \overline{co}(\{0\} \cup J(C \cap \overline{U}))$ we have that $\overline{co}(R(C))$ is compact. Thus $R \in M^{MM}(Y, X)$.

Now (2.9) guarantees that there exists a $x \in Y$ with $\Phi(x) \cap R(x) \neq \emptyset$. There are two cases to consider, namely $x \in U$ and $x \in Y \setminus U$. If $x \in U$ then $\Phi(x) \cap J(x) \neq \emptyset$, and we are finished. If $x \in Y \setminus U$ then since $R(x) = \{0\}$ (note also $J|_{\partial U} = 0|_{\partial U}$) we have $\Phi(x) \cap \{0\} \neq \emptyset$, and this contradicts (2.7) (see also (2.6)). \Box

We now give another example of a Φ -essential map when X = Y (we present the result for a general map F and a particular case is when F is the zero map assuming $0 \in M(\overline{U}, Y)$ and $0 \notin \Phi(\partial U)$).

Theorem 2.11. Let X = Y be a Hausdorff topological vector space, U an open subset of Y, $\Phi : \overline{U} \to 2^Y$, $F \in M^M_{\partial U}(\overline{U}, Y)$ and assume the following conditions hold:

(2.11)
$$\begin{cases} \text{ there exists a retraction } r: Y \to \overline{U} \text{ with} \\ r(B) \subseteq co(\{0\} \cup B) \text{ for any subset } B \text{ of } Y \end{cases}$$

(2.12)
$$\begin{cases} \text{for any map } J \in M^M_{\partial U}(\overline{U}, Y) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{the map } r J \in M(\overline{U}, \overline{U}) \end{cases}$$

(2.13)
$$\begin{cases} \text{for any map } H \in M^{MM}(\overline{U}, \overline{U}) \text{ there exists} \\ x \in \overline{U} \text{ with } \Phi(x) \cap H(x) \neq \emptyset \end{cases}$$

and

(2.14)
$$\begin{cases} \text{for any map } J \in M^M_{\partial U}(\overline{U}, Y) \text{ with } J|_{\partial U} = F|_{\partial U} \\ \text{there is no } z \in Y \setminus U \text{ and } y \in \overline{U} \text{ with} \\ z \in J(y) \text{ and } r(z) \in \Phi(y). \end{cases}$$

Then F is Φ -essential in $M^M_{\partial U}(\overline{U}, Y)$.

Proof: Let $J \in M^M_{\partial U}(\overline{U}, Y)$ with $J|_{\partial U} = F|_{\partial U}$. Let H = rJ. Note $H \in M(\overline{U}, \overline{U})$. We claim $H \in M^{MM}(\overline{U}, \overline{U})$. To see this let $D \subseteq \overline{U}$ and $D = \Phi^{-1}(\overline{co}(\{0\} \cup H(D)))$ with $C \subseteq D$ countable and $\Phi(C) \subseteq \overline{co}(\{0\} \cup rJ(C))$ (or $\overline{\Phi(C)} = \overline{co}(\{0\} \cup rJ(C))$). Now from (2.11) we have

$$\overline{co}\left(\{0\} \cup r J(C)\right) \subseteq \overline{co}\left(\{0\} \cup co\left(\{0\} \cup J(C)\right)\right) = \overline{co}\left(\{0\} \cup J(C)\right)$$

and

$$\overline{co}\left(\{0\} \cup r J(D)\right) \subseteq \overline{co}\left(\{0\} \cup J(D)\right)$$

so since $D = \Phi^{-1}(\overline{co}(\{0\} \cup r J(D)))$ we have

$$D \subseteq \Phi^{-1}(\overline{co}(\{0\} \cup J(D)))$$
 and $\Phi(C) \subseteq \overline{co}(\{0\} \cup J(C)).$

Now since $J \in M^M(\overline{U}, Y)$ we have that $\overline{co}(J(C))$ is compact. Now since $\overline{co}(r J(C)) \subseteq \overline{co}(co(\{0\} \cup J(C))) = \overline{co}(\{0\} \cup J(C))$ we have that $\overline{co}(r J(C))$ is compact. Thus $H = r J \in M^{MM}(\overline{U}, \overline{U})$.

Now (2.13) guarantees that there exists a $x \in \overline{U}$ with $\Phi(x) \cap r J(x) \neq \emptyset$. Then $r(y) \in \Phi(x)$ for some $y \in J(x)$. There are two cases to consider, namely $y \in U$ and $y \in Y \setminus U$. If $y \in U$ then $y = r(y) \in \Phi(x)$ and $y \in J(x)$ i.e. $\Phi(x) \cap J(x) \neq \emptyset$, and we are finished (note $x \in U$ since $J \in M^M_{\partial U}(\overline{U}, Y)$ so in particular $J(w) \cap \Phi(w) = \emptyset$ for $w \in \partial U$). If $y \in Y \setminus U$ then $y \in J(x)$, $r(y) \in \Phi(x), x \in \overline{U}$ and this contradicts (2.14). \Box

Remark 2.12. Let Y be a locally convex Hausdorff topological vector space, U a convex subset of Y, $0 \in U$, $\Phi = i$ (the identity),

(2.15)
$$x \notin \lambda Fx \text{ for } x \in \partial U \text{ and } \lambda \in (0,1]$$

and let

$$r(x) = \frac{x}{\max\{1, \mu(x)\}} \quad \text{for } x \in Y;$$

here μ is the Minkowski functional on \overline{U} (i.e. $\mu(x) = \inf\{\alpha > 0 : x \in \alpha \overline{U}\}$).

Note (2.11) is true. Now we show (2.14) holds. To see this suppose $J \in M^M_{\partial U}(\overline{U}, Y)$ with $J|_{\partial U} = F|_{\partial U}$ and assume there exists $z \in Y \setminus U$ and $y \in \overline{U}$ with $z \in J(y)$ and $r(z) \in \Phi(y)$ (i.e. r(z) = y). Now

$$y = r(z) = \frac{z}{\mu(z)}$$
 with $\mu(z) \ge 1$ since $z \in Y \setminus U$.

Then $y \in \lambda J(y)$ with $0 < \lambda = \frac{1}{\mu(z)} \leq 1$. Note $y = r(z) \in \partial U$ since $z \in Y \setminus U$, and so

$$y \in \lambda J(y) = \lambda F(y)$$
 since $J|_{\partial U} = F|_{\partial U}$.

This contradicts (2.15), so (2.14) is true.

In fact the argument in Theorem 2.11 establishes the following coincidence result.

Theorem 2.13. Let X = Y be a Hausdorff topological vector space, U an open subset of Y, $\Phi : \overline{U} \to 2^Y$, $F \in M^M(\overline{U}, Y)$ and assume (2.11) and (2.13) hold. In addition suppose the following conditions hold:

$$(2.16) rF \in M(\overline{U}, \overline{U})$$

and

(2.17)
$$\begin{cases} \text{ there is no } z \in Y \setminus U \text{ and } y \in \overline{U} \text{ with} \\ z \in F(y) \text{ and } r(z) \in \Phi(y). \end{cases}$$

Then there exists a $x \in \overline{U}$ with $\Phi(x) \cap F(x) \neq \emptyset$.

Proof: To see this let H = r F and as in Theorem 2.11 (with J=F) we see that $H \in M^{MM}(\overline{U}, \overline{U})$. Now (2.13) guarantees that there exists a $x \in \overline{U}$ with $\Phi(x) \cap r F(x) \neq \emptyset$. Then $r(y) \in \Phi(x)$ for some $y \in F(x)$. There are two cases to consider, namely $y \in \overline{U}$ and $y \in Y \setminus \overline{U}$. If $y \in \overline{U}$ then $y = r(y) \in \Phi(x)$ and $y \in F(x)$ and we are finished. If $y \in Y \setminus \overline{U}$ then $y \in F(x)$, $r(y) \in \Phi(x)$, $x \in \overline{U}$ and this contradicts (2.17). \Box

Our final two results are generalizations of Theorem 2.6.

Theorem 2.14. Let X be a Hausdorff topological vector space, Y a normal topological space, U an open subset of $Y, \Phi: \overline{U} \to 2^X, F \in M^M(\overline{U}, X)$ and $G \in M^M_{\partial U}(\overline{U}, X)$ is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$. Also assume there exists a map $H: \overline{U} \times [0,1] \to 2^X$ with $H(.,\eta(.)) \in M^M(\overline{U}, X)$ for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0, \Phi(x) \cap H_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H_t(x) = H(x,t)$), $H_1 = F$, $H_0 = G$ and $\Omega = \{x \in \overline{U}: \Phi(x) \cap H(x,t) \neq \emptyset$ for some $t \in [0,1]\}$ is closed. Then there exists a $x \in \overline{U}$ with $\Phi(x) \cap F(x) \neq \emptyset$.

Proof: Suppose $\Phi(x) \cap F(x) = \emptyset$ for $x \in \partial U$ (otherwise we are finished). Let Ω be as in the statement of Theorem 2.14 and note $\Omega \neq \emptyset$ (note G is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$, $H_0 = G$ and see Remark 2.5). Then there exists a continuous map $\mu : \overline{U} \to [0,1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define the map R by $R(x) = H(x,\mu(x))$. Now $R \in M^M_{\partial U}(\overline{U},X)$ with $R|_{\partial U} = G|_{\partial U}$ (note if $x \in \partial U$ then R(x) = H(x,0) = G(x) and $R(x) \cap \Phi(x) = \Phi(x) \cap G(x) = \emptyset$). Since G is Φ -essential in $M^M_{\partial U}(\overline{U},X)$ there exists $x \in U$ with $R(x) \cap \Phi(x) \neq \emptyset$ (i.e. $H_{\mu(x)}(x) \cap \Phi(x) \neq \emptyset$). Thus $x \in \Omega$ so $\mu(x) = 1$. As a result $H_1(x) \cap \Phi(x) \neq \emptyset$ i.e. $F(x) \cap \Phi(x) \neq \emptyset$. \Box

Remark 2.15. Note in Theorem 2.14 if we replace Y a normal topological space with Y a completely regular topological space then the result in Theorem 2.14 is true provided we replace Ω is closed with Ω is compact.

It is also possible to generalize slightly the result in Theorem 2.14 if one modifies slightly the assumptions.

Theorem 2.16. Let X be a Hausdorff topological vector space, Y a normal topological space, U an open subset of $Y, \Phi : \overline{U} \to 2^X, F \in M^M_{\partial U}(\overline{U}, X)$ and $G \in M^M_{\partial U}(\overline{U}, X)$ is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$. Also assume for any map $J \in M^M_{\partial U}(\overline{U}, X)$ with $J|_{\partial U} = F|_{\partial U}$ there exists a map $H^J : \overline{U} \times [0, 1] \to 2^X$

with $H^J(.,\eta(.)) \in M^M(\overline{U},X)$ for any continuous function $\eta: \overline{U} \to [0,1]$ with $\eta(\partial U) = 0$, $\Phi(x) \cap H^J_t(x) = \emptyset$ for any $x \in \partial U$ and $t \in (0,1)$ (here $H^J_t(x) = H^J(x,t)$), $H^J_1 = J$, $H^J_0 = G$ and

$$\Omega = \left\{ x \in \overline{U} : \Phi(x) \cap H^J(x, t) \neq \emptyset \text{ for some } t \in [0, 1] \right\}$$

is closed. Then F is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$.

Proof: Consider any map $J \in M^M_{\partial U}(\overline{U}, X)$ with $J|_{\partial U} = F|_{\partial U}$. We must show there exists a $x \in U$ with $\Phi(x) \cap J(x) \neq \emptyset$. Choose the map H^J and the set Ω as in the statement of Theorem 2.16 and note $\Omega \neq \emptyset$ (note G is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$ and $H^J_0 = G$). Then there exists a continuous map $\mu : \overline{U} \to [0, 1]$ with $\mu(\partial U) = 0$ and $\mu(\Omega) = 1$. Define the map R by $R(x) = H^J(x, \mu(x))$. Now $R \in M^M_{\partial U}(\overline{U}, X)$ with $R|_{\partial U} = G|_{\partial U}$ (note if $x \in \partial U$ then $R(x) = H^J(x, 0) = G(x)$ and $R(x) \cap \Phi(x) = \Phi(x) \cap G(x) = \emptyset$). Since G is Φ -essential in $M^M_{\partial U}(\overline{U}, X)$ there exists $x \in U$ with $R(x) \cap \Phi(x) \neq \emptyset$ (i.e. $H^J_{\mu(x)}(x) \cap \Phi(x) \neq \emptyset$). Thus $x \in \Omega$ so $\mu(x) = 1$. As a result $H^J_1(x) \cap \Phi(x) \neq \emptyset$ i.e. $J(x) \cap \Phi(x) \neq \emptyset$. \Box

Remark 2.17. Note in Theorem 2.16 if we replace Y a normal topological space with Y a completely regular topological space then the result in Theorem 2.16 is true provided we replace Ω is closed with Ω is compact.

References

[1]. G. Gabor, L. Gorniewicz and M. Slosarski, Generalized topological essentially and coincidence points of multivalued maps, *Set–Valued Anal.*, **17**(2009), 1–19.

[2]. A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.

[3]. H. Mönch, Boundary value problems for nonlinear ordinary differential equations in Banach spaces, *Nonlinear Anal.*, **4**(1980), 985–999.

[4]. D. O'Regan, Abstract Leray–Schauder type alternatives and extensions, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, **27**(2019), 233–243.

[5]. D. O'Regan, Coincidence theory for multivalued maps satisfying compactness conditions on countable sets, *Applicable Analysis*, to appear.

[6]. D. O'Regan, Coincidence results for compositions of multivalued maps based on countable compactness principles, submitted.

[7]. D. O'Regan and R. Precup, Fixed point theorems for set–valued maps and existence principles for integral inclusions, *Jour. Math. Anal. Appl.*, **245**(2000), 594–612.

[8]. M. Vath, Fixed point theorems and fixed point index for countably condensing maps, *Topol. Methods Nonlinear Anal.*, **13**(1999), 341–363.

Donal O'Regan, School of Mathematics, Statistics and Applied Mathematics National University of Ireland, Galway Ireland. Email: donal.oregan@nuigalway.ie

206